
 Generalized Kähler geometry and gerbes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP10(2009)062

(http://iopscience.iop.org/1126-6708/2009/10/062)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 01/04/2010 at 13:37

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/10
http://iopscience.iop.org/1126-6708/2009/10/062/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
1
0
(
2
0
0
9
)
0
6
2

Published by IOP Publishing for SISSA

Received: September 2, 2009

Accepted: October 5, 2009

Published: October 23, 2009

Generalized Kähler geometry and gerbes

Chris M. Hull,a Ulf Lindström,b Martin Roček,c Rikard von Ungec,d,e
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1 Introduction

Recently, generalized Kähler geometry [1] has attracted considerable interest in the physics

and mathematics communities. It was discovered in the study of sigma models with N =

(2, 2) supersymmetry [2, 3], as these have target spaces which necessarily have a generalized

Kähler geometry. Such models have proven to be a powerful tool for elucidating further

aspects of this geometry. Away from certain loci (irregular points of certain canonical

Poisson structures), generalized Kähler geometry can be encoded (locally) in terms of a

single real function: the generalized Kähler potential. In the language of supersymmetric

sigma models, the generalized Kähler potential is the Lagrangian density in N = (2, 2)

superspace [2, 4–7]. Being a potential, it is defined modulo certain ambiguities that can be

understood both from the geometric and from the sigma model points of view. This paper

is an attempt to understand the global issues related to the generalized Kähler potential,

and in particular the aspects that can be understood in terms of gerbes.

Gerbes are a geometrical realization of H3(M,Z) in a manner analogous to the way

a line bundle is a geometrical realization of H2(M,Z). The notion of a holomorphic line

bundle is closely related to Kähler geometry. In this paper, we define and investigate the

properties of a structure that we call a biholomorphic gerbe. A biholomorphic gerbe can

be defined on a bicomplex manifold (M,J+, J−), i.e., a manifold M equipped with two

complex structures. On such a manifold, a biholomorphic gerbe is a collection of those

transition functions defined on the triple intersections

Gαβγ : Uα ∩ Uβ ∩ Uγ → C
∗ , (1.1)

which are biholomorphic,1 i.e., holomorphic with respect to both complex structures. More-

over, the transition functions are antisymmetric under permutations of the open sets and

satisfy a cocycle condition on fourfold intersections. We give a precise definition of biholo-

morphic gerbes, and show that they arise naturally within generalized Kähler geometry.

Where necessary, we shall assume that either M is compact, or that suitable boundary

conditions are imposed.

Our analysis is motivated and guided by the sigma model discussion. One objective

of the paper is to translate sigma model considerations into proper geometrical terms.

To make the paper accessible to both physicists and mathematicians, we review some

standard material concerning line bundles, gerbes and supersymmetric sigma models. In

all our constructions we adopt the concrete and simple description of gerbes advocated by

Hitchin [14, 15]. Note that when we use the terms holomorphic (biholomorphic) functions

and their exponentials, we have in mind O, the sheaf of holomorphic (biholomorphic)

functions, and O∗, the multiplicative sheaf of nowhere zero holomorphic (biholomorphic)

functions, respectively.

Previous uses of gerbes in physics, particularly in the context of WZW models and

anti-symmetric tensor gauge fields, have appeared in, e.g., [8–13].

1Our use of the word should not be confused with a bijective holomorphic function whose inverse is also

holomorphic, which is sometimes also referred to as a biholomorphic function.
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The paper is organized as follows. In section 2 we review some basic facts about

line bundles and gerbes. Section 3 reviews holomorphic line bundles and their relation to

Kähler geometry. Section 4 discusses the notion of a holomorphic gerbe with a Hermitian

connection. We point out the appearance of a flat gerbe associated to a Hermitian connec-

tion. In section 5 we review the bihermitian description of generalized Kähler geometry and

discuss the properties of gerbes with connection associated to this geometry. In particular,

we show that generalized Kähler geometry can be encoded in terms of two flat gerbes with

additional very special properties. Section 6 is a key part of the present work where we

discuss the gluing of the generalized Kähler potential and the relation to biholomorphic

gerbes. Section 7 deals with the special case in which the two complex structures commute;

then all points are regular and the situation is particularly simple. Section 8 presents a

summary of the results as well as some open questions. In the appendix we discuss the

example of the natural biholomorphic gerbe with connection on S3 × S1.

2 Line bundles and gerbes

In this section we review some standard facts about line bundles with connection and

gerbes with connection and introduce our notation. We consider a smooth manifold M

with an open cover {Uα} where all open sets and intersections are contractible.

2.1 Line bundles and U(1) connections

Let us first recall some facts about line bundles. An S1-bundle can be thought of as a set

of transition functions

gαβ : Uα ∩ Uβ → S1 , (2.1)

which satisfy gαβ = g−1
βα and the cocycle condition on Uα ∩ Uβ ∩ Uγ

gαβgβγgγα = 1 . (2.2)

This condition is trivially satisfied when the transition functions are themselves cobound-

aries: gαβ = hαh
−1
β . S1-bundles are equivalent to complex line bundles with a Hermi-

tian metric.

To any ω
2π ∈ H2(M,Z) we can associate a line bundle with connection as follows. Using

the Poincaré lemma, we find 1-forms Aα, functions Λαβ and constants dαβγ satisfying

ω = dAα , Aα ∈ Ω1(Uα) , (2.3)

Aα −Aβ = dΛαβ , Λαβ ∈ C∞(Uα ∩ Uβ) , (2.4)

Λαβ + Λβγ + Λγα = dαβγ , dαβγ ∈ 2π Z (2.5)

where the last relation is guaranteed since ω
2π ∈ H2(M,Z) (see e.g. [16] for the proof).

Since the coboundary of Λαβ is equal to 2π times an integer, we can exponentiate it

to get transition functions gαβ = eiΛαβ that satisfy the cocycle condition (2.2) on triple

intersections. The condition (2.4) can be rewritten as

iAα − iAβ = g−1
αβdgαβ (2.6)

– 3 –
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and thus the set of one-forms Aα defines a connection on a line bundle and ω is its curvature.

The possible choices of inequivalent connection with the same curvature are parametrized

by H1(M,R)/H1(M,Z). When the curvature vanishes, this is precisely the space of flat

connections, parameterized by their holonomies.

2.2 Gerbes

This definition of a line bundle and a connection can be generalized to gerbes. Gerbes

were invented by Giraud [17] and later extensively discussed by Brylinski [18]. We use

the simple point of view advocated by Hitchin in [15]. Consider maps defined on each

threefold intersection

gαβγ : Uα ∩ Uβ ∩ Uγ → S1 , (2.7)

satisfying

gαβγ = gβγα = gγαβ = g−1
βαγ = g−1

αγβ = g−1
γβα (2.8)

as well as the cocycle condition on Uα ∩ Uβ ∩ Uγ ∩ Uδ

gαβγgβαδgγβδgδαγ = 1 . (2.9)

As for the line bundle, this condition is trivially satisfied when the transition functions

are themselves coboundaries: gαβγ = hαβhβγhγα. This data defines a gerbe; we use this

definition throughout, though there exist other (equivalent) definitions; for details see [15,

19–21].

2.3 U(1) connections on gerbes

By analogy with the line bundle case we can interpret H
2π ∈ H3(M,Z) as the curvature2 of

a gerbe with connection. The Poincaré lemma implies the following chain of relations

H = dBα , Bα ∈ Ω2(Uα) , (2.10)

Bα −Bβ = dAαβ , Aαβ ∈ Ω1(Uα ∩ Uβ) , (2.11)

Aαβ +Aβγ +Aγα = dΛαβγ , Λαβγ ∈ C∞(Uα ∩ Uβ ∩ Uγ) , (2.12)

Λαβγ + Λβαδ + Λγβδ + Λδαγ = dαβγδ , dαβγδ ∈ 2π Z , (2.13)

where the last one is satisfied as a consequence of H
2π ∈ H3(M,Z). Using this data we can

define the set of functions gαβγ : Uα ∩ Uβ ∩ Uγ → S1 given by

gαβγ = eiΛαβγ , (2.14)

which, as a result of (2.13), satisfy (2.8)–(2.9) and thus define a gerbe. Equation (2.12)

can be rewritten as

iAαβ + iAβγ + iAγα = g−1
αβγdgαβγ . (2.15)

From (2.14) we see that Λαβγ are angles,

Λαβγ ∈ 2πR/Z . (2.16)

The above data defines (up to equivalence) a gerbe with connection.

2The requirement that the form be integral is an additional requirement on the geometry from the point

of view of mathematics. From the physics point of view this requirement is very natural since (on a compact

target space) flux has to be quantized to give a well defined quantum theory.

– 4 –
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2.4 Transition line bundle description of gerbes

There is an alternative way to define gerbes [15, 19]. A gerbe can always be made trivial

locally. What this means is that in each open set Uα it is possible to choose an open cover

{V
(α)
i } = Uα∩Ui and functions h

(α)
ij defined on V

(α)
i ∩V

(α)
j such that on V

(α)
i ∩V

(α)
j ∩V

(α)
k

we have

gijk = h
(α)
ij h

(α)
jk h

(α)
ki . (2.17)

The choice of h
(α)
ij in general is different in each Uα. Only when the gerbe is trivial can one

make such a choice globally. In the overlap Uα∩Uβ we now have two different trivializations

gijk = h
(α)
ij h

(α)
jk h

(α)
ki = h

(β)
ij h

(β)
jk h

(β)
ki (2.18)

Thus fij = h
(α)
ij /h

(β)
ij satisfies the cocycle condition which implies that fij are the transition

functions of a line bundle defined on Uα ∩Uβ. This line bundle is called the transition line

bundle of the gerbe, and is an equivalent way of encoding the data of the gerbe.

2.5 Flat gerbes

A flat gerbe is defined as a gerbe with vanishing curvature: H = 0. Then Bα is closed, so

that using the Poincaré lemma,

Bα = dqα , (2.19)

Aαβ = qα − qβ + dpαβ , (2.20)

Λαβγ = pαβ + pβγ + pγα + lαβγ , (2.21)

lαβγ + lβαδ + lγβδ + lδαγ = dαβγδ , dαβγδ ∈ 2π Z , (2.22)

for some qα which are one-forms on Uα, some pαβ which are functions on Uα∩Uβ and some

lαβγ which are constants. Since the Λαβγ are angles, the constants lαβδ are also angles,

only determined up to an additive factor 2πZ:

lαβγ ∈ 2πR/Z . (2.23)

Then exp (ilαβγ) is a 2-cocycle so that lαβγ/2π is a 2-cocycle in R/Z, and represents a Čech

class in H2(M,R/Z), which corresponds to the holonomy of the flat gerbe. A flat gerbe is

then defined by transition functions of the form

gαβγ = ei(pαβ+pβγ+pγα)eilαβγ (2.24)

which is the product of a trivial piece and a constant.

3 Holomorphic line bundles

Complex holomorphic line bundles over complex manifolds are natural structures in the

study of Kähler geometry.

– 5 –
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3.1 Holomorphic line bundles and Hermitian connections

When M is a complex manifold, a holomorphic line bundle can be defined as a set of

holomorphic functions

Gαβ : Uα ∩ Uβ → C
∗ , (3.1)

with Gβα ≡ (Gαβ)
−1 obeying a cocycle condition of the form (2.2) on triple intersections.

The topology of the bundle is classified by H2(M,Z), and a class is represented by a two-

form ω
2π ∈ H2(M,Z). One can then define an underlying line bundle with connection whose

curvature is ω. If furthermore ω is of type (1, 1) with respect to the complex structure,

(locally) we can write

ω = i∂∂̄Kα =
1

2
ddcKα , (3.2)

where Kα is a real function on Uα, defined up to shifts by the real part of a holomorphic

function, and dc ≡ i(∂̄ − ∂). On Uα ∩ Uβ we have

Kα −Kβ = Fαβ(z) + F̄αβ(z̄) , (3.3)

where Fαβ is a holomorphic function on Uα ∩Uβ. On the triple intersection Uα ∩Uβ ∩Uγ ,

eq. (3.3) implies

Re (Fαβ + Fβγ + Fγα) = 0 . (3.4)

Comparing these relations with the real equations (2.3)–(2.5), we find

Aα =
1

2
dcKα , Λαβ = Im(Fαβ) . (3.5)

Thus, on triple intersections, the holomorphic function Fαβ satisfies

Fαβ + Fβγ + Fγα = idαβγ ∈ 2πiZ , (3.6)

which allows us to define the holomorphic transition functions

Gαβ(z) = eFαβ(z) : Uα ∩ Uβ → C
∗ . (3.7)

These transition functions satisfy the standard cocycle condition of the form (2.2) and

thus define a holomorphic line bundle. Furthermore, eK has transition functions eKα =

GαβḠαβe
Kβ which are precisely the transition functions that a Hermitian fiber metric

should have. Thus eK is a Hermitian fiber metric and so defines a Hermitian structure on

the holomorphic line bundle; such a structure exists whenever ω
2π ∈ H2(M,Z) is of type

(1, 1). The condition satisfied by the transition functions can be rewritten as

GαβḠαβ = eKαe−Kβ . (3.8)

with the right hand side a trivial cocycle, and this is the form of the condition we generalize

to gerbes.

– 6 –
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3.2 Relation to Kähler-Hodge geometry

Holomorphic line bundles play an important role in Kähler-Hodge geometry. Consider the

Kähler manifold (M,J, g) with ω = gJ being a Kähler form. Then formula (3.2) provides

the local definition of the Kähler potential. The global information about the geometry

is encoded in an underlying holomorphic line bundle equipped with a Hermitian metric.

When ω/2π ∈ H2(M,Z) the manifold is said to be Hodge and the Kähler potential can be

given as

Kα = log ||sα||
2 , (3.9)

where sα is a nowhere vanishing section of a holomorphic line bundle and ||s||2 = hss̄ with

h the Hermitian metric on this bundle [22].

4 Holomorphic gerbes and connections

For complex manifolds, one can define holomorphic gerbes in complete analogy with holo-

morphic line bundles.

4.1 Holomorphic gerbes

A holomorphic gerbe on a complex manifold M is a set of holomorphic functions

Gαβγ : Uα ∩ Uβ ∩ Uγ → C
∗ (4.1)

that are antisymmetric under permutations of the open sets and satisfy a cocycle condition

on fourfold intersections. Moreover, if there exist real functions hαβ on double intersections

such that

GαβγḠαβγ = hαβhβγhγα (4.2)

so that GḠ is a trivial cocycle, then we refer to such a gerbe as a holomorphic gerbe with a

Hermitian structure, as this is a natural generalisation of the condition (3.8) for hermitian

structures on holomorphic line bundles.

4.2 Hermitian connections on holomorphic gerbes

For a closed 3-form H such that H
2π ∈ H3(M,Z) there exists a gerbe with connection

as described in section 2. Assume that H is of type (2, 1) + (1, 2) with respect to the

complex structure. Below we explain that this gives a generalization of the holomorphic

line bundle which corresponds to a holomorphic gerbe with a Hermitian structure and a

connection that respects the Hermitian structure; we refer to this as a holomorphic gerbe

with hermitian connection.

On Uα, a connection two-form Bα with H = dBα can be chosen to be of type (1, 1)

(we refer to this as the (1, 1) gauge for B). Then on the double intersection Uα ∩ Uβ we

have that B
(1,1)
α − B

(1,1)
β is closed and dc-closed so that it can be written as i∂̄∂υαβ for

some real function υαβ on Uα ∩Uβ. For later convenience, we write this as the real part of

some complex function ξαβ on Uα ∩ Uβ, υαβ = ξαβ + ξ̄αβ, since the imaginary part plays a

role later. Then

B(1,1)
α −B

(1,1)
β = i∂̄∂(ξαβ + ξ̄αβ) , (4.3)

– 7 –
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and on the triple intersection Uα ∩ Uβ ∩ Uγ we find

ξαβ + ξβγ + ξγα + ξ̄αβ + ξ̄βγ + ξ̄γα = −fαβγ(z) − f̄αβγ(z̄) , (4.4)

with fαβγ a holomorphic function on Uα ∩Uβ ∩Uγ . Comparing with (2.10)–(2.12) we find

the following relations

Aαβ =
i

2
∂(ξαβ + ξ̄αβ) −

i

2
∂̄(ξαβ + ξ̄αβ) , (4.5)

Λαβγ =
i

2
(f̄αβγ − fαβγ) . (4.6)

In analogy with the holomorphic line bundle, the imaginary part of the holomor-

phic function f satisfies (2.13) whereas the real part is a trivial cocycle as a consequence

of (4.4). Therefore

fαβγ + fβαδ + fγβδ + fδαγ ∈ 2πi Z , (4.7)

and we can define holomorphic transition functions

Gαβγ = efαβγ (4.8)

that satisfy the cocycle condition of the form (2.9) on fourfold intersections. Moreover,

due to the property (4.4), the corresponding holomorphic gerbe has a Hermitian structure,

i.e., the transition functions satisfy (4.2) with hαβ = exp(−ξαβ − ξ̄αβ). This is then a

holomorphic gerbe with Hermitian connection. The curvature three-form H is necessarily

of type (2, 1) + (1, 2) with respect to the complex structure.

We are particularly interested in generalized (Kähler) geometries for which the closed

form H also satisfies dcH = 0, so that ∂H = ∂̄H = 0. Locally the (2, 1)-part of such an H

can be written as follows

H(2,1) = i∂∂̄λ(1,0)
α , (4.9)

where λ
(1,0)
α is a complex (1, 0)-form on Uα. Alternatively, in real coordinates we can write

H = ddc(Re λ(1,0)
α ) . (4.10)

Choosing the (1, 1) gauge for B and using (4.9), we obtain

B(1,1)
α = i∂̄λ(1,0)

α − i∂λ̄(0,1)
α . (4.11)

On the double intersection Uα ∩ Uβ we have, using (4.3),

λ(1,0)
α − λ

(1,0)
β = ∂ξαβ + φ

(1,0)
αβ , (4.12)

where ξαβ is a complex function whose real part enters in (4.3) and φ(1,0) is a holomorphic

(1, 0)-form (i.e., ∂̄φ
(1,0)
αβ = 0). This decomposition is not unique: we can always shift a

∂ exact holomorphic one-form between the two terms on the r.h.s. of (4.12), while leav-

ing (4.3) unchanged.

– 8 –
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4.3 Transition line bundle on a holomorphic gerbe

Notice that from (4.3) we can interpret −(ξ+ ξ̄) as the (Kähler) potential for the curvature

δBαβ = Bα−Bβ of the transition line bundle defined on Uα∩Uβ. This gives an equivalent

description of a holomorphic gerbe with Hermitian connection in terms of a holomorphic

transition line bundle with hermitian structure (cf. the discussion in section 2.4 for the

real case).

4.4 Hermitian geometry of (2,0)-supersymmetric sigma models

The Hermitian connection on the holomorphic gerbe described above defines a Hermitian

geometry (M,J, g) with complex structure J and Hermitian metric g, which is precisely

the geometry of a sigma model with (2,0) supersymmetry [23]. The fundamental 2-form

ω = gJ is of type (1, 1) but is not closed. Instead, it satisfies

ddcω = 0 , (4.13)

and defines a torsion 3-form

H = dcω , (4.14)

which is closed and dc-closed and of type (2, 1) + (1, 2), so that it is given in terms of a

1-form potential λ
(1,0)
α by (4.10). The fundamental two-form is given in Uα in terms of

λ
(1,0)
α by

ω = −(∂̄λ(1,0)
α + ∂λ̄(0,1)

α ) . (4.15)

If λ
(1,0)
α = −i∂Kα, then the manifold is Kähler with Kähler potential Kα and H = 0.

4.5 An associated flat gerbe

Because the gerbe curvature (4.10) has 1-form potential Re(λ
(1,0)
α ), we can define a collec-

tion of locally defined closed forms

Fα = d Re(λ(1,0)
α ) . (4.16)

We interpret this collection of two-forms as connection two-forms for a flat gerbe. We

elaborate on this flat gerbe in the following sections.

5 Generalized Kähler geometry

In this section we review the definition of generalized Kähler geometry and discuss the

gerbe associated with this geometry.

5.1 Bihermitian formulation of generalized Kähler geometry

A generalized Kähler manifold (M,J+, J−, g) is a manifold M with two complex structures

J± and a bihermitian metric g satisfying the integrability conditions

dc+ω+ + dc−ω− = 0 , ddc±ω± = 0 , (5.1)

– 9 –
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where ω± = gJ± and dc± are the i(∂̄− ∂) operators associated with the complex structures

J±. The conditions (5.1) imply that we can define a closed three form

H = dc+ω+ = −dc−ω− , dH = 0 (5.2)

which is also dc-closed, dcH = 0.

5.2 Gerbes on a generalized Kähler geometry

If H
2π ∈ H3(M,Z) then we have a gerbe with connection. The condition H

2π ∈ H3(M,Z)

is necessary for the sigma model with Wess-Zumino term specified by H to give a well-

defined quantum theory (on a compact target space), and we assume that this holds. The

definitions ω± = gJ± and (5.2) imply that H is a (2, 1) + (1, 2) form with respect to both

complex structures:

H = H
(2,1)
+ +H

(1,2)
+ = H

(2,1)
− +H

(1,2)
− , (5.3)

H
(2,1)
± −H

(1,2)
± = ∓idω± , (5.4)

which implies

H
(2,1)
+ −H

(2,1)
− = H

(1,2)
− −H

(1,2)
+ = −

i

2
d (ω+ + ω−) , (5.5)

H
(2,1)
+ −H

(1,2)
− = H

(2,1)
− −H

(1,2)
+ = −

i

2
d (ω+ − ω−) . (5.6)

5.3 Two gerbe connections

As H is a (2, 1) + (1, 2) form with respect to both complex structures, the discussion from

the previous section about holomorphic hermitian gerbes applies twofold: the globally

defined curvature 3-form H is the curvature of two holomorphic gerbes with Hermitian

connection, one associated with each of the two complex structures, J±. We use the same

notation as in section 4, adding the subscript ± to indicate the relevant complex structure.

For a given H we can choose a connection B+α that is (1, 1) respect to J+ or a connection

B−α which is (1, 1) respect to J−, with H = dB±α. Note that in general these specify

inequivalent gerbes with connection.

For each choice of connection B± there are descendants λ
(1,0)
± , ξ±, f± satisfying formulas

of the form (4.11)–(4.6) with ± added appropriately to indicate the choice of complex struc-

ture.

5.4 A flat gerbe

Two gerbes with connection associated to the same curvature three-form differ by a

flat gerbe, so H = dB
(1,1)
+α = dB

(1,1)
−α and hence d[B

(1,1)
+α − B

(1,1)
−α ] = 0. Then we

have(cf. (2.19)–(2.21))

B
(1,1)
+α −B

(1,1)
−α = dqα , (5.7)

A+
αβ −A−

αβ = qα − qβ + dpαβ , (5.8)

Λ+
αβγ − Λ−

αβγ = pαβ + pβγ + pγα + lαβγ , (5.9)
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where qα are one-forms on Uα, pαβ are functions on Uα ∩ Uβ and lαβγ are constants.

Using (4.4) and the definition (4.8) we conclude that the transition functions

gαβγ = G+
αβγḠ

−
αβγ = ei(Λ

+

αβγ
−Λ−

αβγ
) (5.10)

correspond to a flat gerbe, as they are of the form (2.24).

However, generalized Kähler geometry contains more structure than two Hermitian

gerbes with Hermitian connections that have the same curvature. In particular, (5.2)

implies H is dc±-exact. The ω± are (1, 1) forms and they have nice expressions in terms of

one-form potentials λ
(1,0)
± (see the previous section)

ω
(1,1)
± = ∓

(

∂±λ̄
(0,1)
± + ∂̄±λ

(1,0)
±

)

. (5.11)

Since ω± are globally defined two forms we can conclude from (4.12) and (5.11) that in

Uα ∩ Uβ
ddc±

(

ξ̄± − ξ±
)

= 0 ,

which tells us that the imaginary part of (ξαβ)± can be written as the imaginary part of

a holomorphic function for both complex structures. This in turn tells us that ∂±Imξ± is

a holomorphic one-form and can therefore be absorbed in φ± in equation (4.12). Thus we

conclude that ξ can always be chosen to be real. With a real ξ, (4.12) and (4.4) imply that

φ
(1,0)
αβ + φ

(1,0)
βγ + φ(1,0)

γα =
1

2
∂fαβγ =

1

2
G−1
αβγdGαβγ , (5.12)

It is possible to choose a two-form connection B of type (2, 0) + (0, 2) so that H(2,1) =

dB
(2,0)
α .3 The reality of ξ allows us to choose an A

(1,0)
αβ with the following chain of relations

H(2,1) = dB(2,0)
α , (5.13)

B(2,0)
α −B

(2,0)
β = dA

(1,0)
αβ , (5.14)

A
(1,0)
αβ +A

(1,0)
βγ +A(1,0)

γα = −
i

2
G−1
αβγdGαβγ , (5.15)

where we have suppressed the labels ± denoting the complex structure. We stress that

these relations do not hold in general for holomorphic gerbes with Hermitian connection.

These relations imply that

∂B(2,0)
α = 0, ∂̄A

(1,0)
αβ = 0 . (5.16)

From (4.9), we see that B
(2,0)
α can be chosen to be

B(2,0)
α = −i∂λ(1,0)

α (5.17)

so that (4.12) implies that a holomprphic (1, 0) form satisfying (5.14) is

A
(1,0)
αβ = −iφ

(1,0)
αβ . (5.18)

Then (5.15) follows from (5.12).

3We refer to this as the (2, 0) gauge. See, e.g., [24] for this and other gauges.
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5.5 Two locally defined symplectic forms

Combining the relations (5.2) and (5.13) we are led to a very unexpected description of

generalized Kähler geometry in terms of locally defined closed nondegenerate forms, which

can also be thought of in a more global language as flat gerbe connections. Using the

relations (4.15) and (5.17), the two-forms (4.16) can be written as

F±
α =

i

2

(

B
(2,0)
±α −B

(0,2)
±α

)

∓
1

2
ω± . (5.19)

This is a collection of closed two-forms F±
α defined on Uα; dF±

α = 0 follows immediately

from (5.2) and (5.13). Moreover, these forms are nondegenerate, i.e., F±
α are symplectic

structures on Uα. These forms (and linear combinations of them) can be interpreted as

connection forms for a flat gerbe, which may or may not be trivial. It has been shown that

the flat gerbes specified by the collection of two forms

1

2

(

F+
α ±F−

α

)

,

plays an essential role in the definition of topological string theory on generalized Kähler

manifolds [24]. The different choices of sign correspond to either A- or B-twist topologi-

cal models.

5.6 Another characterization of generalized Kähler geometry

The forms F±
α encode the full local geometrical data of the generalized Kähler geometry

on a bicomplex manifold. We have the following theorem holding locally:

Theorem. Consider a coordinate patch U of a bicomplex manifold. Suppose there exist

two symplectic forms F± that tame the complex structures J± respectively, i.e., for any

nonzero tangent vector v we have

F±(v, J±v) > 0 .

If in addition

F+J+ − J t−F
−

is a closed two-form, then this data defines a generalized Kähler geometry on U .

Proof: The proof is straightforward. Note that the condition in the theorem is that

F+(v, J+v) > 0 and F−(v, J−v) > 0. Let us decompose the 2-form F+ with respect to the

complex structures J+ and F− with respect to J−,

F± = (F±)(2,0) + (F±)(0,2) + (F±)(1,1) . (5.20)

Comparing with (5.19), we identify

(F±)(1,1) = ∓
1

2
ω± , (F±)(2,0) =

i

2
(B±)(2,0) . (5.21)
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Using these identifications we decompose F+J+ and J t−F
− into symmetric and anti-

symmetric parts,

F+J+ = −
1

2
B+ +

1

2
g+ , J t−F

− = −
1

2
B− +

1

2
g− , (5.22)

where g± are symmetric tensors and B± are anti-symmetric tensors. If the corresponding

symplectic structures tame the complex structures J±, then g± are positive-definite and so

define metrics. The second condition in the theorem implies that

g+ = g− ≡ g , dB+ = dB− ≡ H . (5.23)

Then the condition dF± = 0 implies

dB+ = dc+ω+ = dB− = −dc−ω− , (5.24)

with ω± = gJ±. Thus we obtain the standard local bihermitian formulation of generalized

Kähler geometry.

This theorem can be understood as an alternative local description of generalized

Kähler geometry; it is formulated entirely in terms of locally bisymplectic bicomplex ge-

ometry. In order to make the theorem global one has to specify the way the forms F±

patch together in overlaps. As should be clear from the previous discussion, they have the

transition functions of flat gerbe connections. A special case of this theorem in which F±

are globally defined and obey F+ = −F− was considered in [25].

In this section we have presented a number of results concerning the gerbe structures of

generalized Kähler geometry. However using the notion of the generalized Kähler potential

we can analyse the underlying structures further.

6 The generalized Kähler potential

In [2], it was found that the N = (2, 2) superspace Lagrangian of supersymmetric sigma

models encoded particular examples of generalized Kähler geometry in terms of a single

generalized Kähler potential; this was extended to more generic situations in [4], and

conjectured to hold generally in [5]. In [6], it was proved that this is indeed the case: away

from irregular points, a generalized Kähler manifold can be locally described in terms of

a single real function K, the generalized Kähler potential. In this section we discuss the

gluing properties of the generalized Kähler potential and their relation to the underlying

gerbe with connection.

6.1 Review of the potential

We now briefly review the local geometry of a generalized Kähler manifold and its descrip-

tion in terms of a potential. Generalized Kähler manifolds have a rich underlying Poisson

geometry [26, 27]: there are two real Poisson structures π± = (J+ ± J−)g−1. We call a

point regular if there exists a neighborhood of that point where π± have constant rank. In

addition there is a third Poisson structure σ = [J+, J−]g−1 = π−gπ+ which can be written
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as the real part of a Poisson structure that is holomorphic with respect to either complex

structure: σ = 1
2 [σ

(2,0)
± + σ

(0,2)
± ]. In the neighborhood of a regular point we can introduce

coordinates adapted to the corresponding symplectic foliations: we introduce coordinates

(φ, φ̄, χ, χ̄,XL, X̄L,XR, X̄R) such that (dφ, dφ̄) span the kernel of π− and (dχ, dχ̄) span the

kernel of π+. The remaining coordinates XL,R, X̄L,R lie along the leaves of σ. We choose

Darboux coordinates XL, YL for σ
(2,0)
+ = dXL ∧ dYL and XR, YR for σ

(2,0)
− = dXR ∧ dYR;

then a polarization is just a choice of an equal number of XL and XR coordinates out

of the set {XL, YL,XR, YR}. The generalized Kähler potential is locally a function of

(φ, φ̄, χ, χ̄,XL, X̄L,XR, X̄R), and all geometrical quantities are given in terms of second

derivatives of K. The relations are linear if σ = 0 (see the next section) but are nonlinear

in general. For further details the reader can consult [6, 7, 28].

The generalized Kähler potentialK is not defined uniquely by the geometry; the precise

form of the relation between K and the geometry depends on the choice of polarization on

the leaves of σ, and for a given polarization K can be shifted by generalized Kähler gauge

transformations without changing the geometry, as is described below. A change of a

polarization on a leaf of σ corresponds to a coordinate change (symplectomorphism) and

transforms K by a Legendre transformation.

We now focus on generalized Kähler manifolds that are regular everywhere; the case

with irregular points is more subtle and we leave it to future investigations.

6.2 Generalized Kähler transformations on overlaps

When all the Poisson structures are regular everywhere on the manifold, we can choose

natural coordinates in each patch and in their intersections. In addition, K can transform

when we move between different patches. For instance, if we have the same polarization in

Uα and Uβ, then requiring that Kα and Kβ define the same geometry on Uα ∩ Uβ implies

Kα −Kβ = F+
αβ(φ, χ,XL) + F̄+

αβ(φ̄, χ̄, X̄L) + F−
αβ(φ, χ̄,XR) + F̄−

αβ(φ̄, χ, X̄R) , (6.1)

for some special J+-holomorphic function F+
αβ and special J−-holomorphic function F−

αβ.
4

These functions are defined in turn up to the following shifts

F+
αβ(φ, χ,XL) → F+

αβ(φ, χ,XL) + ραβ(φ) + σαβ(χ) , (6.2)

F̄+
αβ(φ̄, χ̄, X̄L) → F̄+

αβ(φ̄, χ̄, X̄L) + ρ̄αβ(φ̄) + σ̄αβ(χ̄) , (6.3)

F−
αβ(φ, χ̄,XR) → F−

αβ(φ, χ̄,XR) − ραβ(φ) − σ̄αβ(χ̄) , (6.4)

F̄−
αβ(φ̄, χ, X̄R) → F̄−

αβ(φ̄, χ, X̄R) − ρ̄αβ(φ̄) − σαβ(χ) . (6.5)

Here ραβ is holomorphic with respect to both J±, and hence is biholomorphic, and σαβ
is holomorphic with respect to J+ and −J− and hence is twisted biholomorphic (see the

discussion below in subsection 6.5).

From (6.1) we have the following relation

Re(F+
αβ + F+

βα + F−
αβ + F−

βα) = 0 ; (6.6)

4An, e.g., J+-holomorphic function could depend on (φ, χ, XL, YL); a special J+-holomorphic function

is defined with respect to a choice of polarization and depends only on (φ, χ, XL).
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using the ambiguities (6.2)–(6.5) we can choose F+’s and F−’s to be separately antisym-

metric under interchange of the open sets:

F+
αβ = −F+

βα , F−
αβ = −F−

βα . (6.7)

6.3 Biholomorphic and twisted biholomorphic cocycles on triple overlaps

Taking the coboundary of (6.1) we get on Uα ∩ Uβ ∩ Uγ

Re(F+
αβ + F+

βγ + F+
γα + F−

αβ + F−
βγ + F−

γα) = 0 , (6.8)

which implies that the coboundary of F± can be expressed in terms of biholomorphic and

twisted biholomorphic functions cαβγ(φ) and bαβγ(χ):

F+
αβ(φ, χ,XL) + F+

βγ(φ, χ,XL) + F+
γα(φ, χ,XL) = i (cαβγ(φ) − bαβγ(χ)) , (6.9)

F̄+
αβ(φ̄, χ̄, X̄L) + F̄+

βγ(φ̄, χ̄, X̄L) + F̄+
γα(φ̄, χ̄, X̄L) = −i

(

c̄αβγ(φ̄) − b̄αβγ(χ̄)
)

, (6.10)

F−
αβ(φ, χ̄,XR) + F−

βγ(φ, χ̄,XR) + F−
γα(φ, χ̄,XR) = −i

(

cαβγ(φ) + b̄αβγ(χ̄)
)

, (6.11)

F̄−
αβ(φ̄, χ, X̄R) + F̄−

βγ(φ̄, χ, X̄R) + F̄−
γα(φ̄, χ, X̄R) = i

(

c̄αβγ(φ̄) + bαβγ(χ)
)

, (6.12)

where the c and b functions are defined up to constant shifts

cαβγ(φ) → cαβγ(φ) + hαβγ , (6.13)

bαβγ(χ) → bαβγ(χ) + hαβγ . (6.14)

At the same time, using (6.7) we can derive the relations

cαβγ(φ) + cβαγ(φ) − bαβγ(χ) − bβαγ(χ) = 0 , (6.15)

cαβγ(φ) + cβαγ(φ) + b̄αβγ(χ̄) + b̄βαγ(χ̄) = 0 . (6.16)

Using the ambiguities (6.13)–(6.14) and the relations (6.15)–(6.16) we can always choose

such c and b which satisfy

cαβγ = −cβαγ = −cαγβ = −cγβα , bαβγ = −bβαγ = −bαγβ = −bγβα . (6.17)

6.4 Integral cocycles on four-fold overlaps

Now on Uα ∩ Uβ ∩ Uγ ∩ Uδ we have

cαβγ + cβαδ + cγβδ + cδαγ − bαβγ − bβαδ − bγβδ − bδαγ = 0 , (6.18)

cαβγ + cβαδ + cγβδ + cδαγ + b̄αβγ + b̄βαδ + b̄γβδ + b̄δαγ = 0 . (6.19)

These conditions imply

cβγδ + cδγα + cαβδ + cβαγ =
i

4
dαβγδ , (6.20)

bβγδ + bδγα + bαβδ + bβαγ =
i

4
dαβγδ . (6.21)

In particular using the formulas in [6] for H in terms of K we see that if H
2π ∈ H3(M,Z)

then dαβγδ ∈ 2πZ.
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Let us elaborate on the relation between the generalized Kähler potential and the

description of a gerbe with connection from section 4. The key observation is that using

formulas from [6] we can find a linear expression for the one-form potentials λ± (see (5.11))

in terms of the generalized Kähler potential as

λ
(1,0)
+ + λ̄

(0,1)
+ = −i

(

∂K

∂Xα′

R

dXα′

R +
∂K

∂φa
dφa −

∂K

∂χa′
dχa

′

)

− c.c. (6.22)

= −

(

∂K

∂XA′

R

(J−)A
′

B′dXB′

R +
∂K

∂φA
(J−)ABdφ

B +
∂K

∂χA′
(J−)A

′

B′dχB
′

)

,

λ
(1,0)
− + λ̄

(0,1)
− = i

(

∂K

∂Xα
L

dXα
L +

∂K

∂φa
dφa +

∂K

∂χa′
dχa

′

)

− c.c.

=

(

∂K

∂XA
L

(J+)ABdX
B
L +

∂K

∂φA
(J+)ABdφ

B +
∂K

∂χA′
(J+)A

′

B′dχB
′

)

, (6.23)

(see [6] for our index conventions.) Then comparing with (4.12), we find that in the double

overlap Uα ∩ Uβ

ξ+ = i(F̄− − F−) (6.24)

φ
(1,0)
+ = i

(

∂F+

∂χa′
dχa

′

−
∂F+

∂φa
dφa

)

(6.25)

ξ− = i(F+ − F̄+) (6.26)

φ
(1,0)
− = i

(

∂F−

∂φa
dφa −

∂F−

∂χ̄ā′
dχ̄ā

′

)

(6.27)

from which follows (using (4.6) and (6.9)–(6.12))

Λαβγ = i
(

c̄αβγ(φ̄) − cαβγ(φ) + b̄αβγ(χ̄) − bαβγ(χ)
)

. (6.28)

Assuming the integrality of H and the relations (6.20), (6.21) we find that (2.13) is satisfied

with dαβγδ ∈ 2πZ. This allows us to introduce the functions

Gαβγ(φ) = e4cαβγ(φ) , Fαβγ(χ) = e4bαβγ(χ) , (6.29)

defined over triple intersections

Gαβγ , Fαβγ : Uα ∩ Uβ ∩ Uγ ,→ C
∗ , (6.30)

which are antisymmetric under permutations of the open sets and satisfy the cocycle con-

dition on the four-fold intersection.

6.5 Comments on biholomorphic functions

Note that G depends only on φ and F depends only on χ. On any manifold M with two

complex structures J+ and J−, a complex function f is biholomorphic if it is holomorphic

with respect to both complex structures, i.e.,

(d− idc±)f = 0 . (6.31)
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As a result of this f also satisfies

(dc+ − dc−)f = 0 . (6.32)

Thus on a generalized Kähler manifold a biholomorphic function f is a Casimir function of

the Poisson structure π−, i.e., df ∈ ker π−. In the coordinate system we use, this means that

a biholomorphic function is a function of only φ. Analogously one can consider functions

which are holomorphic with respect to J+ and antiholomorphic with respect to J−, which

we call twisted biholomorphic. Such functions are the Casimir functions for π+ and in our

coordinates depend only on χ.

6.6 Biholomorphic gerbes

Combining the above, we arrive at the definition of a biholomorphic gerbe on a bicomplex

manifold (M,J+, J−) as a collection of biholomorphic functions Gαβγ that are antisymmet-

ric under permutations of the open sets and satisfy the cocycle condition on four-fold in-

tersections. Analogously we define a twisted biholomorphic gerbe as a collection of twisted

biholomorphic functions Fαβγ . In the analysis above we have shown that a bihomolo-

morphic gerbe and a twisted bihomolomorphic gerbe naturally appear in the context of

generalized Kähler geometry through the discussion of gluing of the generalized Kähler po-

tential. Moreover, by exponentiating the equations (6.9)–(6.12) we arrive at the following

relation between biholomorphic and twisted biholomorphic transition functions

GαβγF
−1
αβγ = h+

αβh
+
βγh

+
γα , GαβγF̄αβγ = h−αβh

−
βγh

−
γα , (6.33)

where h±αβ = exp(∓4iF±
αβ) are J±-holomorphic functions of special form.

Alternatively, one can define this structure using transition line bundles; essentially, one

defines a holomorphic transition line bundle for each complex structure on the generalized

Kähler manifold M and imposes a compatibility condition which is equivalent to (6.33).

This description is sometimes more compact, and is used in the example of a biholomorphic

gerbe on S1 × S3 given in the appendix.

In the special case in which (J+ − J−) is invertible everywhere on M , then the only

biholomorphic functions are constants. Indeed in this case H is cohomologically trivial.5

Analogously one can show that if (J+ + J−) is invertible everywhere on M , then the only

twisted biholomorphic functions are constants and again H is exact.

The present analysis is not complete. We have focused on the linear transforma-

tions (6.1) of K; however, as shown in [6], K also encodes a choice of polarization for

symplectic leaves on the manifold. A change of this polarization is realized by a Legendre

transformation, and we have not explored how this nonlinear transformation intertwines

with the linear transitions discussed above. We leave the problem of finding a full geomet-

rical interpretation of K for future research.

5This is easy to see in the formulation of generalized Kähler geometry in terms of generalized complex

structures. In this case one of the generalized complex structures is of symplectic type and therefore H

is exact.
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7 Bihermitian local product spaces

In this section we consider the special case of regular generalized Kähler manifolds for

which σ = [J+, J−]g−1 = 0. This means that we can simply exclude XL,R and X̄L,R from

all formulas of the previous section. This case is considerably simpler than the general

case since all geometrical objects depend linearly on the generalized Kähler potential and

it is guaranteed that every point is regular. Such a space carries a local product structure

Π = J+J− and is called a Bihermitian Local Product space (or BiLP for short). Locally, a

BiLP looks like a product of two Kähler manifolds and in a way H is responsible for making

this product nontrivial. The simplest compact example of such geometry is S3 × S1, and

this example is analyzed in the appendix.

7.1 The generalized Kähler potential on a BiLP

On a BiLP, the complex structures J± commute, and hence the differentials dc± obey

dc+d
c
− = −dc−d

c
+ (7.1)

as well as ddc± = −dc±d. Hence, on a BiLP we can write the closed three-form H as

H =
1

2
ddc+d

c
−Kα , (7.2)

where Kα is a real function on a patch Uα and H is (2, 1)+(1, 2) form with respect to both

complex structures J±. Comparing (7.2) and (5.2), we see that the two-forms ω± can also

be simply expressed in terms of Kα.

There are a number of compatible distributions on TM given by J+, J− and Π. This

allows us to have quadruple-grading on the differential forms and split the de Rham dif-

ferential as follows

d = ∂φ + ∂χ + ∂φ̄ + ∂χ̄ . (7.3)

Further details on the geometry and notation can be found in [2, 28].

7.2 Gerbes on a BiLP

It is a straightforward exercise to work out the whole chain of the relations (4.3)–(4.12)

and (5.13)–(5.15) in terms of the data coming from the gluing of the generalized Kähler po-

tential Kα. As particular examples, let us present the following expressions (also see the

equations (6.22)–(6.27) from the previous section). Choose, e.g., J+ as the complex struc-

ture with respect to which the differential forms are graded; the relations (5.13)–(5.15) are

satisfied by

B(2,0)
α = 2

(

∂φ̄∂χ̄ + ∂φ∂χ
)

Kα , (7.4)

A
(1,0)
αβ = −2∂φF

+
αβ , (7.5)

Gαβγ = e4cαβγ , (7.6)

where the transition functions are chosen to be biholomorphic. Indeed, one can write

many more formulas along these lines which would correspond to different but equivalent
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ways of describing the gerbe with connection. There always exists a choice that makes the

transition functions (twisted) biholomorphic.

In the case of a holomorphic line bundle the existence of a Hermitian structure (3.8)

is equivalent to the existence of a Kähler potential. However, in the context of a holo-

morphic gerbe, a Hermitian structure only implies the existence of real function hαβ on

double intersections, see (4.2). These functions hαβ are interpreted as exponents of the

Kähler potential for the transition line bundle (see the discussion at the end of section 2).

The holomorphic gerbe with Hermitian structure does not naturally produce a real func-

tion defined over a patch Uα. However in the present context we can introduce the notion

of a bihermitian structure on a (twisted) biholomorphic gerbe that is equivalent to the

existence of the generalized Kähler potential.

Suppose that on a bicomplex manifold (M,J+, J−) we have transition functions for

a biholomorphic gerbe Gαβγ and transition functions for a twisted biholomorphic gerbe

Fαβγ . The biholomorphic and twisted biholomorphic gerbes are are both hermitian if the

following condition is satisfied:

GαβγF
−1
αβγ = h+

αβh
+
βγh

+
γα , GαβγF̄αβγ = h−αβh

−
βγh

−
γα , (7.7)

where h±αβ are J±-holomorphic functions on double intersections. The products GαβγFαβγ
are J+-holomorphic functions on the triple intersections which satisfy the cocycle condition

on the four-fold intersections, since both Gαβγ and Fαβγ satisfy the cocycle conditions inde-

pendently. Moreover, from (7.7) the product (GFḠF̄ )αβγ is a real trivial cocycle. Therefore

GαβγFαβγ can be interpreted as the transition functions for a J+-holomorphic gerbe with

Hermitian structure. Analogously, GαβγF̄
−1
αβγ can be interpreted as the transition functions

for a J−-holomorphic gerbe with Hermitian structure.

Furthermore, (7.7) implies the condition

h+
αβh

+
βγh

+
γαh̄

−
αβ h̄

−
βγh̄

−
γα = h−αβh

−
βγh

−
γαh̄

+
αβh̄

+
βγ h̄

+
γα , (7.8)

which implies h+(h̄+)−1(h−)−1h̄− is a trivial real cocycle:

h+
αβ h̄

−
αβ(h

−
αβ)

−1(h̄+
αβ)

−1 = eKαe−Kβ , (7.9)

where the real function Kα is defined on Uα and can be interpreted as a generalized

Kähler potential. Thus, on a bihermitian local product space, given a biholomorphic and

twisted biholomorphic gerbe satisfying the bihermitian compatibility condition (7.7), one

can always construct a generalized Kähler potential.

8 Summary and conclusions

We have discussed aspects of gerbes that arise naturally on generalized Kähler geometries.

These geometries are bihermitian, with two complex structures and a related single closed

three-form H. It is natural to construct two holomorphic gerbes with the same curvature

H. The additional structure of the generalized Kähler geometries allows one to describe

them in terms of a generalized Kähler potential (away from irregular points). Using this
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potential, we showed that the two gerbes fit together into a structure we called the biholo-

morphic gerbe, whose transition functions can be chosen to be holomorphic with respect to

both complex structure (biholomorphic). When the complex structures commute, we were

able to explicitly reverse the construction and use the gerbe to construct the generalized

Kähler potential. We believe that this should be possible in general, and that the biholo-

morphic gerbe plays the same role for generalized Kähler geometry as the holomorphic line

bundle plays for Kähler geometry.

The generalized (Kähler) potential arises naturally as the superspace Lagrange density

in the sigma model approach [6]; a geometric interpretation as a generator of symplecto-

morphisms related to a choice of polarization was given for the case in which the Poisson

structures of the manifold are nondegenerate. Here we see that in the complementary

(BiLP) case, when the Poisson structures are maximally degenerate, it has an interpreta-

tion as a new kind of bihermitian structure on a biholomorphic gerbe. It would be very

interesting to understand the general case, which should combine both perspectives. In

particular, the global characterization of the generalized Kähler potential should allow for

changes of polarization generated by Legendre transforms, as well as generalized Kähler

gauge transformations in the transitions between coordinate patches.

Other extensions of this work that are of immediate interest concern irregular points.

Generically, these form (real) co-dimension two loci within the manifold, and can carry

nontrivial topology — this corresponds to charge for the gerbe connection.

In the appendix, we give a careful discussion of the generalized Kähler structure on

S3 × S1 viewed as a BiLP. There are other generalized Kähler structures on S3 × S1 that

exemplify type change; these will be presented in a separate publication.
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A S
3

× S
1

The manifold S3×S1 is a well known example that illustrates many aspects of the previous

discussion. It has a bihermitian structure [29, 30] with a nontrivial biholomorphic gerbe.
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The curvature of the gerbe is proportional to the volume form of the S3 factor; classically,

we can normalize it as we choose, but in the quantum theory, the normalization determines

the level of the corresponding WZW-model.

The manifold has a Bihermitian Local Product (BiLP) structure, and in adapted com-

plex coordinates φ, χ, the metric can be written as:

ds2 =
1

8π

[

dφdφ̄+ dχdχ̄

φφ̄+ χχ̄

]

. (A.1)

Here the direction corresponding to the homothety (uniform rescaling of φ, χ) lies along

the S1 factor, and the S3 is found by fixing φφ̄ + χχ̄ to a constant. We compactify the

homothetic coordinate to S1 by the restriction

1 ≤ φφ̄+ χχ̄ < e4π . (A.2)

The metric can be given a more familiar form by introducing real coordinates

φ = er+iϕ sin θ , (A.3)

χ = er+iψ cos θ , (A.4)

in which the metric becomes

ds2 =
1

8π

(

dr2 + dθ2 + sin2 θdϕ2 + cos2 θdψ2
)

. (A.5)

The r direction decouples and corresponds to the S1. The S3 is described as an interval

(0 ≤ θ ≤ π
2 ) with a torus fibration over it (the torus being coordinatized by 0 ≤ ϕ,ψ ≤ 2π).

The torus degenerates at the endpoints of the interval.

The metric (A.1) can integrated to give a generalized Kähler potential [29]

Kα =
1

8π









1

2

(

lnφφ̄
)2

−

χχ̄

φφ̄
∫

1

dx
ln(1 + x)

x









. (A.6)

This is well defined in a patch Uα where φ 6= 0. When φ goes to zero we can make a Kähler

gauge transformation and go to a generalized Kähler potential

Kβ =
1

8π









−
1

2
(lnχχ̄)2 +

φφ̄
χχ̄
∫

1

dx
ln(1 + x)

x









, (A.7)

which is well defined in the open set Uβ where χ 6= 0. The Kähler gauge transformation

taking us between Uα and Uβ is

Kα −Kβ =
1

8π

[

ln
(

φφ̄
)

ln(χχ̄)
]

, (A.8)
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which also immediately tells us that, cf. (6.1)

F+
αβ =

1

8π
lnφ lnχ , (A.9)

F−
αβ =

1

8π
lnφ ln χ̄ . (A.10)

This is enough information to define the gerbe for this generalized Kähler manifold.

The simplest definition in this case is in terms of the “transition line bundle” on double

overlaps as summarized at the end of section 6. The double overlap Uαβ = Uα ∩ Uβ has

the topology of a cylinder (an interval times the S1 factor) times a torus (constructed from

the phases of φ and χ). The gerbe is specified by giving a holomorphic line bundle on this

set. The first Chern class of this bundle is specified by an integer, which determines the

relative factor between the volume form on S3 and the Chern class of the gerbe (and gives

the level of the corresponding WZW model).

We can check that this interpretation makes sense since the information that we have

is enough to compute the Kähler form of this line bundle as well as the connection one-form

and the transition functions. Using the data we have

ω = 2∂∂̄
(

F̄− − F−
)

=
1

4π

(

dχ

χ
∧
dφ̄

φ̄
−
dφ

φ
∧
dχ̄

χ̄

)

, (A.11)

A(1,0) =
1

8π

[

ln χ̄
dφ

φ
− ln φ̄

dχ

χ

]

, (A.12)

which, if we use the real coordinates (A.3) becomes

ω =
1

2π

(

dr ∧ dθ

sin θ cos θ
+ dψ ∧ dϕ

)

. (A.13)

We can also compute H:

H =
1

π
sin θ cos θdθ ∧ dϕ ∧ dψ , (A.14)

which is the volume form of S3 with the normalization 2π so that H
2π is integral.

We could now go on to find the transition functions of the gerbe on triple overlaps. To

do this we would first need to subdivide Uα and Uβ to define a good cover. The nontrivial

transition functions are then associated with the phases one picks up going around the

torus defined from the phases of φ and χ.
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